Blog › Authors › Brandon Mensing

Brandon Mensing

Keep Tabs on Your Box

12.09.2014 | Posted by Brandon Mensing

You can argue till you’re blue in the face about which cloud storage to use these days. But you can’t argue (at least not with me) about whether you should be auditing what’s going on in those tools. Sure, these services have a decent EULA and plenty of encryption. However, that doesn’t mean your own employees are following your policies. And let’s not forget how easily passwords fail.

The good news is that you can get setup to monitor your Box account with Sumo Logic in a few simple steps. Following our documentation, a simple script will talk to the Box service, retrieve audit events and bring them into Sumo Logic via a Script Source. Then just install the Box app from our service (a few simple clicks) and you’ll be able to quickly inspect how your organization is using Box.

With our off the shelf dashboards, I encourage all of you using Box to explore your deployment. You may be surprised at what you find. Odd behavior patterns can bubble up, showing you that a critically sensitive document is being overshared; or that one of your users has recently shared thousands upon thousands of documents in an apparent attempt to walk out the door with your IP; or that an unexpected user is logged in and accessing documents.

Cloud storage systems promise a lot of security and privacy but ultimately it’s still up to you to identify malicious users, policy violations and security threats. Using this great new app, you’ll find that it’s easy and effective to monitor and investigate activities in your Box account. Give it a try today and use our support portal to send us your feedback!

Brandon Mensing

Use AWS CloudTrail to Avoid a Console Attack

11.11.2014 | Posted by Brandon Mensing

Our app for AWS CloudTrail now offers a dashboard specifically for monitoring console login activity. In the past months since the AWS team added this feature, we decided to break out these user activities in order to provide better visibility into what’s going on with your AWS account.

Many of you might think of this update as incremental and not newsworthy, but I’m actually writing here today to tell you otherwise! More and more people are using APIs and CLIs (and third parties) to work with AWS outside the console. As console logins are becoming more and more rare and as more business-critical assets are being deployed in AWS, it’s critical to always know who’s logged into your console and when.

For a great and terrifying read about just how badly things can go wrong when someone gains access to your console, look no further than the story of Code Spaces. With one story opening with “was a company” and another “abruptly closed,” there isn’t exactly a lot of suspense about how things turned out for this company. After attackers managed to gain access to Code Spaces’ AWS console, they built themselves a stronghold of backdoors and began an attempt to extort money from the company. When the attackers accounts were removed, they quickly used the additional users they had generated to get back in and begin taking out infrastructure and data. With the service down and their customer’s data in disarray, all trust in their product was lost. The company was effectively destroyed in a matter of hours.

The new dashboard in our updated CloudTrail app allows you to quickly see who’s attempting to login to your console, from where and whether or not they’re using multi-factor authentication (which we highly recommend).

CloudTrail Console Logins

If you haven’t installed the app previously, be sure to follow our simple steps from our documentation to setup the appropriate permissions in AWS. For those of you who have already installed the app previously, you can install the app again anew in order to get a new copy of the app with the additional dashboard included. From there, we encourage you to customize queries for your specific situation and even consider setting up a scheduled search to alert you to a problematic situation.

Keeping an eye out for suspicious activity on your AWS console can be an invaluable insight. As attackers get more sophisticated, it’s harder and harder to keep your business secure and operational. With the help of Sumo Logic and logs from AWS CloudTrail you can stay ahead of the game by preventing the most obvious (and most insidious) types of breaches. With functionality like this, perhaps Code Spaces would still be in business.

Brandon Mensing

Using the Join Operator

10.29.2013 | Posted by Brandon Mensing

The powerful analytics capabilities of the Sumo Logic platform have always provided the greatest insights into your machine data. Recently we added an operator – bringing the essence of a SQL JOIN to your stream of unstructured data, giving you even more flexibility.

In a standard relational join, the datasets in the tables to be joined are fixed at query time. However, matching up IDs between log messages from different days within your search timeframe likely produces the wrong result because actions performed yesterday should not be associated with a login event that occurred today. For this reason, our Join operator provides for a specified moving timeframe within which to join log messages. In the diagram below, the pink and orange represent two streams of disparate log messages. They both contain a key/value pair that we want to match on and the messages are only joined on that key/value when they both occur within the time window indicated by the black box.



Now let’s put this to use. Suppose an application has both real and machine-controlled users. I’m interested in knowing which users are which so that I can keep an eye out for any machine-controlled users that are impacting performance. I have to find a way to differentiate between the real vs the machine-controlled users. As it turns out, the human users create requests at a reasonably low rate while the machine-controlled users (accessing via an API) are able to generate several requests per second and always immediately after the login event.


In these logs, there are several different messages coming in with varying purposes and values. Using Join, I can query for both the logins and requests and then restrict the time window of the matching logic to combine the two messages streams. The two sub queries in my search will look for request/query events and login events respectively. I’ve restricted the match window to just 15 seconds so that I’m finding the volume of requests that are very close to the login event. Then I’m filtering out users who made less than 10 requests in that 15-second time frame following a login. The result is a clear view of the users that are actively issuing a large volume of requests via the API immediately upon logging in. Here is my example query:

(login or (creating query))
| join
(parse "Creating query: '*'" as query, "auth=User:*:" as user) as query,
(parse "Login success for: '*'" as user) as login
on query.user = login.user
timewindow 15s
| count by query_user
| where _count > 10
| sort _count

As you can see from the above syntax, the subqueries are written with the same syntax and even support the use of aggregates (count, sum, average, etc) so that you can join complex results together and achieve the insights you need. And of course, we support joining more than just two streams of logs – combining all your favorite data into one query!